

vml2610 series əirsən pipe

VML2610 SERIES "AIRSAN" ANTIBACTERIAL FLEXIBLE PIPE

FEATURES

Flexible pipe, made with exclusive technology; the pipe is made of the following materials, starting from the inside to the outside:

- Film of polyolefin resins additivated with antibacterial and anti-mold master.
- Built-in spiral made of harmonic steel wire,
- 4 mm thick thermal insulation layer made of cross-linked polyethylene and closed-cell foam,
- External protection made of additive polyolefin resin film. The assembly of materials, in order to construct the flexible conduit, does not involve the use of adhesive chemicals or adhesives.

Color:

pale grey.

Reaction to fire:

- class 1 (DM 26/06/84),
- homologation no. RE1205C20D100011,
- EN class B-s2, d0 (13501-1:2009),

Max. pressure:

2000 Pa.

Max air speed:

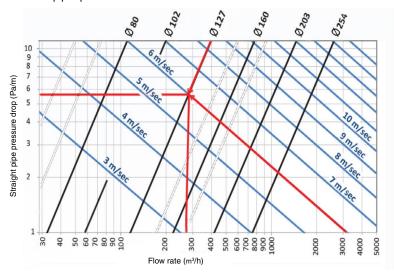
20 m/s.

Operating temperature:

-20°C ...+ 90°C.

Minimum radius of curvature:

1.2 ÷ 1.8 times the diameter (depending on diameters).

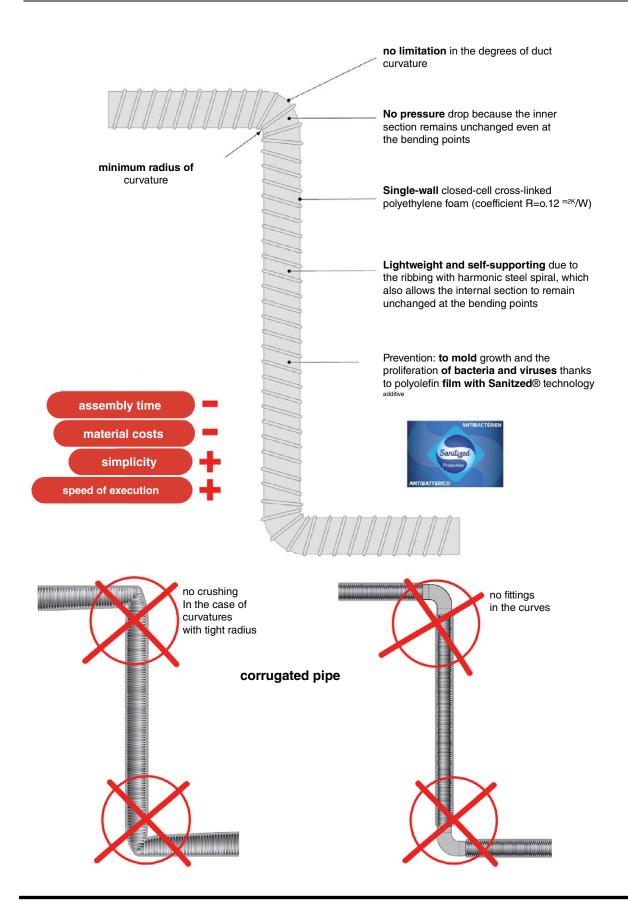

Length:

10 meters of pipe per package.

IMPORTANT NOTE: For minimum pressure drop (as in graph below) the pipe must be installed of laid nearly straight.

GRAPHICS

"AIRSAN" pipe quick selection chart.


TABLE WITH PHYSICAL-MECHANICAL PROPERTIES OF CROSS-LINKED POLYETHYLENE FOAM THICKNESS 4 MM CONSTITUENT OF "AIRSAN" PIPE

Physicomechanical properties	U.M.	Method	Values	
Density	Kg/m³	ISO 845	100	
Combustion class	-	IT: D.M. 26/06/84 EU: EN 13501-1:2009	CL1 Class B-s2, d0	
Conductivity coefficient thermal at 0°C (λ)	W/mK	UNI EN 12664:2002	0,032	
Conductivity coefficient thermal at 10°C (λ)	W/mK	UNI EN 12664:2002	0,033	
Conductivity coefficient thermal at 30°C (λ)	W/mK	UNI EN 12664:2002	0,035	
Conductivity coefficient thermal at 60°C (λ)	W/mK	UNI EN 12664:2002	0,038	
Chemical Agent Assault	-	Surface application external of the specific agent Chemical and verification of any changes after 48 hours	No modification and/or damage for:ETHANOL AMMONIACA DEGREASER HIGH CONC. COOLANT	
Maximum peak operating temperature	operating temperature °C e min. Identification of the maximum peak temperature bearable by the pipe and all its behaviors		$+115^\circ$; no more than 2 min.	
Example usage limits for the purpose of Avoid the risk of condensation on the outer wall	°C e %	OPTION 1 (Ø102) OPTION 2 (Ø102)	Temp. air flow 15° Temp. outdoor 34° Um. room rel. 70% Temp. Airflow 10° Temp. outside 28° Um. room rel. 70%	
Channel holding	-	EN 12237 - EN 1507 - EN 12599 EN 13180	Class D COMPLIANCE	

TABLE WITH CHARACTERISTICS (TECHNICAL DATA) OF AIRSAN PIPE, VARYING BY DIAMETER

Ø (mm)	Working pressure (bar)	Operating depression (bar)	Radius of curvature (mm)	Weight (gr/ml)	
80	0.50	0.09	56	154	
102	0.40	0.08	70	200	
127	0.40	0.07	92	254	
160	0.15	0.05	0.05 110		
203	0.15	0.04	140	492	
254	0.08	0.03	175	600	

INSTALLATION FEATURES

CERTIFICATIONS

	CERTIFICATIONS									
	SAN	IFICATION		REACTION TO FIRE						
Country / Team departs / Team of the Country / Team departs / Team of the Country / Team departs	Testing the artibactorial activity and officery in less than a popular to the quantitate decreased of the company of the compa	rechologia Sanitized is produced with film new generation polyolefin additivated with active ingredient "Antibacterial Sanitized" capable of. Break down the microbial and bacterial load present within the ducts and conveyed by air, for the safety of humans and	ΙΤ	Classe 1 (D.M. 26/06/84) Omologa n.: RE1205C20D100011						
Received four model of a pra- dicated of the pra- dicated of the pra- dicated of the practice.	Considers an asset of the difference in leading on any fig. hard control of the difference is supported by the control of the	Santigod NO BACTERIA NO MILDEW	EU	Classe B-s2, d0 (EN 13501-1:2009)						

GREEN BUILDING.

Thanks in part to the support and backing of GreenMap, **Airsan** products contribute to credits from major international building sustainability rating systems:

LEED

Contributes to the following credits: $\label{eq:loss_eq} \mbox{IP, EA, MR}$

WELL

Contributes to the following credits: MATERIALS, COMMUNITY

BREEAM

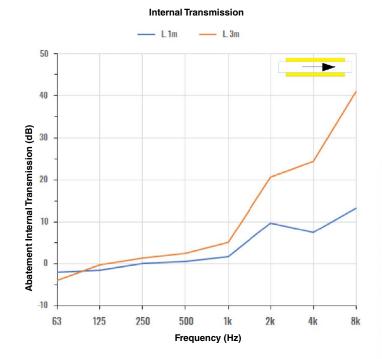
Contributes to the following credits: MAN, ENE, WST

	APPLICATIONS									
	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\mathbb{X}	A		Q	::::	®			
OEM	Residential	Smooth surfaces	Flexibility	Easy Pack	Self-extinguishing	Mold resistance	Resistance to microorganisms	Resistance to uncorking		
	REACH ROHS H		HF			*	*			
Calibrated Diameters*	REACH Certificate	Robs Cartificate Halogen-tr		gen-free Building T		Conditionam. air	VMC			
			&							
			Prolonged anti condensation	Naval						

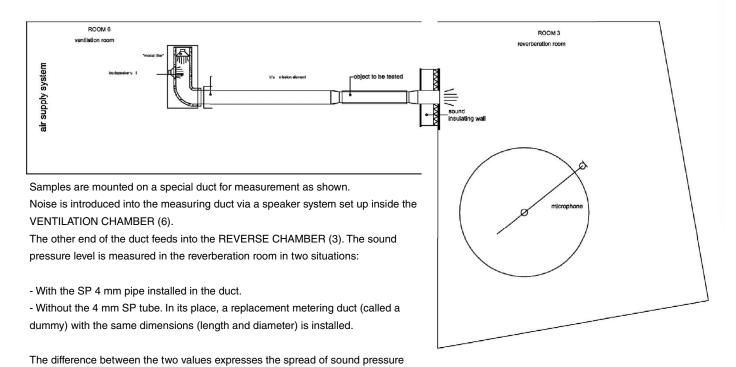
INDOOR ACOUSTIC TRANSMISSION TEST - ISO 7235:2003

The data in the table opposite identifies the noise abatement value in relation to the internal pipe transmission on the 4 mm thick hose model.

We would like to point out that the data were obtained through <u>audits by certified or qualified external</u>


<u>laboratories and followed by testing in accordance</u>

<u>with ISO 7235:2003</u>.

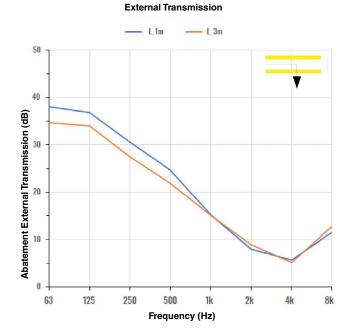

However, they can give a general assessment of the tube's functionality and the performance it can provide under real operating conditions.

The results reported are the result of tests conducted with a white noise source in the frequencies between 63 Hz and 8000 Hz.

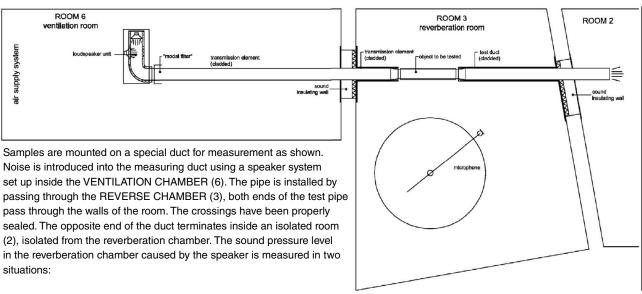
inside the pipe.

		SP 4MM	Attenuation Internal dB - Freq. [Hz] - ISO 7235:2003							
	ID [mm]	L. [m]	63	125	250	500	1k	2k	4k	8k
102	1	-2	-1,6	0,1	0,5	1,6	9,7	7,4	13,2	
	102	3	-4	-0,2	1,3	2,4	5,1	20,7	24,4	40,9

EXTERNAL SOUND TRANSMISSION TEST - ISO 7235:2003


The data in the table opposite identify the noise abatement value in relation to outward transmission to the pipe on the **4 mm thick hose model**.

We would like to point out that the data were obtained through <u>audits by certified or qualified external</u>


laboratories and followed by testing in accordance with ISO 7235:2003.

However, they can give a general assessment of the tube's functionality and the performance it can provide under real operating conditions.

The results reported are the result of tests conducted with a white noise source in the frequencies between 63 Hz and 8000 Hz.

		External Attenuation dB - Freq. [Hz] - ISO 7235:2003								
ID	L.	63	125	250	500	1k	2k	4k	8k	
[mm]	[m]									
102	1	38	36,8	30,5	24,7	15,2	8	5,7	11,4	
102	3	34,7	34	27,4	21,9	15,1	8,9	5,2	12,7	

- With the SP 4 mm pipe installed in the measuring duct in the reverberation chamber;
- Without the 4 mm SP pipe and an open test pipe.

The difference between the two values expresses the ability of the pipe to reduce sound transmission through the pipe walls to the outside.

